Revision of AASHTO LRFD Bridge Design Specification Section 10.4 – Status Update

J. Erik Loehr, Ph.D., P.E.

AASHTO T-15 Committee Meeting
Committee on Bridges and Structures Annual Meeting
Montgomery, Alabama
June 25, 2019
Motivation

Low Site Variability

High Site Variability

AASHTO LRFD Specifications, 2012
Opportunity…

- If we do this right…
 - Can improve consistency of achieving target reliability
 - Can enable and empower designers to get appropriate investigations
 - Can design more efficiently
 - Can reduce risk for design and construction

…without adding excessive complexity to design!
Requirements

- We have to change the code…while still maintaining practicality and usefulness

- We will have to calculate/estimate variability and uncertainty for design parameters in some way…

 …some added complexity is necessary!

- We will need conscientious effort to develop and effectively implement
Codes Reviewed

- AASHTO LRFD Specification – 8th Edition
- FHWA GEC 5 – 2017 Revision
- MoDOT Engineering Policy Guidelines
- Canadian Highway Bridge Design Code – S6-14: Update No. 1 – April 2016
 - BC Ministry of Transportation & Infrastructure Supplement to CHBDC
- Eurocode 7: EN1997
- Select state guidelines/specifications
<table>
<thead>
<tr>
<th>Characteristic Value</th>
<th>AASHTO</th>
<th>AASHTO-GEC5</th>
<th>MoDOT EPG</th>
<th>Euro7</th>
<th>CHBDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean?</td>
<td>Mean?</td>
<td>Mean?</td>
<td>Mean?</td>
<td>Mean?</td>
<td>Mean?</td>
</tr>
<tr>
<td>Factors</td>
<td>Resistance</td>
<td>Resistance</td>
<td>Partial</td>
<td>Both</td>
<td>Resistance</td>
</tr>
<tr>
<td>Parameter Uncertainty</td>
<td>Prescriptive</td>
<td>Prescriptive</td>
<td>Quantitative</td>
<td>Quantitative</td>
<td>Subjective</td>
</tr>
<tr>
<td>Distinguish Indirect/Derived Parameters</td>
<td>No</td>
<td>Sort of?</td>
<td>Yes</td>
<td>Yes and No</td>
<td>No?</td>
</tr>
</tbody>
</table>
2017 Update to GEC-5

- Content on parameter uncertainty dramatically expanded, including consideration of indirect measurements
- Challenging to rigorously address uncertainty within constraints of current AASHTO code
- As a stop-gap measure, recommended:
 - “important” design parameters be established to have $COV_{model} \leq 0.30$
 - If $COV_{model} > 0.30$, conservative estimates for design parameters should be used
AASHTO w/ GEC-5

Low Site Variability

- Over Reliable
- Satisfactory
- Under Reliable

High Site Variability

- Over Reliable
- Satisfactory
- Under Reliable

AASHTO LRFD Specifications, 2012
Resistance Factor for Unit Tip Resistance, ϕ_{qp}

COV of Mean Uniaxial Compressive Strength, COV_{qu}

- Bridges on Minor Roads
- Bridges on Major Roads
- Major Bridges (<$100 million)
- Major Bridges (>=$100 million)

AASHTO Value
MoDOT EPG Performance

Low Variability Site

High Variability Site

Number of Measurements, \(n \)

Percentage of cases

Satisfactory

Under Reliable

Over Reliable

Over Reliable

Satisfactory

Under Reliable
Example…

- Bridge on major road
- Drilled shaft foundations
- Factored load of 3000 kips
- Site characterization from Frankford Load Test site used as example
Example: minimal characterization

Uniaxial Compressive Strength, UCS (ksf)

- Maquoketa Formation A
 - $\mu_{UCS} = 3.5$ ksf
 - $COV_{model} = 0.14$

- Maquoketa Formation B
 - $\mu_{UCS} = 6.1$ ksf
 - $COV_{model} = 0.48$

- Maquoketa Formation C
 - $\mu_{UCS} = 68.1$ ksf
 - $COV_{model} = 0.12$
Example: extensive characterization

Uniaxial Compressive Strength, UCS (ksf)

- Maquoketa Formation A
 - $\mu_{UCS} = 3.3$ ksf
 - $COV_{model} = 0.06$

- Maquoketa Formation B
 - $\mu_{UCS} = 10.4$ ksf
 - $COV_{model} = 0.15$

- Maquoketa Formation C
 - $\mu_{UCS} = 66.2$ ksf
 - $COV_{model} = 0.03$
Implications - example

Minimal Characterization
- 3000 kip factored load
- Required shaft:
 - 4-ft diameter
 - 25-ft length
- Nominal cost: $15,000 per shaft

Extensive Characterization
- 3000 kip factored load
- Required shaft:
 - 4-ft diameter
 - 17-ft length
- Nominal cost: $10,000 per shaft

Benefit of added characterization is approximately $5000 per shaft
What might this look like in new AASHTO?
Eurocode 7

- Uses so-called “Partial Factors” applied to loads, material parameters, and/or resistances

- Design parameters used are so-called “characteristic values”:
 - Defined as “…[values] selected as a cautious estimate of the value affecting the occurrence of the limit state”
 - May be selected subjectively or objectively using statistical methods
 - Values are fundamentally less than the mean value
\[X_{\text{characteristic}} = X_{\text{mean}} (1 - k_n CV_x) \]
What might this look like in new AASHTO?

- “base” resistance factors would look similar to now
- Would add a “parameter uncertainty factor” that would be multiplied by “base resistance factor
- Complexity of “parameter uncertainty factor” is yet to be determined
 - Fundamentally varies with different design methods and parameters
 - Might be able to approximate for broader application?
CHBD Code

<table>
<thead>
<tr>
<th>Application</th>
<th>Limit state</th>
<th>Test Method/Model</th>
<th>Degree of understanding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shallow foundations</td>
<td>Bearing, ϕ_{gu}</td>
<td>Analysis</td>
<td>0.45 0.50 0.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scale model test</td>
<td>0.50 0.55 0.65</td>
</tr>
<tr>
<td></td>
<td>Sliding, ϕ_{gu} Frictional</td>
<td>Analysis</td>
<td>0.70 0.80 0.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scale model test</td>
<td>0.75 0.85 0.95</td>
</tr>
<tr>
<td></td>
<td>Sliding, ϕ_{gu} Cohesive</td>
<td>Analysis</td>
<td>0.55 0.60 0.65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scale model test</td>
<td>0.60 0.65 0.70</td>
</tr>
<tr>
<td>Passive resistance, ϕ_{gu}</td>
<td>Analysis</td>
<td>0.40 0.50 0.55</td>
<td></td>
</tr>
<tr>
<td>Settlement or lateral movement, ϕ_{gs}</td>
<td>Analysis</td>
<td>0.7 0.8 0.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scale model test</td>
<td>0.8 0.9 1.0</td>
<td></td>
</tr>
</tbody>
</table>

(Continued)
Degree of Understanding

- High understanding - extensive project-specific investigation procedures and/or knowledge are combined with prediction models of demonstrated quality to achieve a high level of confidence with performance predictions.

- Typical understanding — typical project-specific investigation procedures and/or knowledge are combined with conventional prediction models to achieve a typical level of confidence with performance predictions.

- Low understanding — limited representative information (e.g., previous experience, extrapolation from nearby and/or similar sites) combined with conventional prediction models to achieve a lower level of confidence with performance predictions.
What might this look like in new AASHTO?

- Would look similar to what is provided in CHBDC
- Values based on calculated uncertainty rather than subjective variability
- Suggest adopt explicit ranges for uncertainty rather than subjective approach
Pros and cons

<table>
<thead>
<tr>
<th>Approach</th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>MoDOT</td>
<td>• Familiar application</td>
<td>• Significant revision to form</td>
</tr>
<tr>
<td></td>
<td>• Most accurate/precise</td>
<td>• Error potential?</td>
</tr>
<tr>
<td></td>
<td>• Most “transparent”</td>
<td></td>
</tr>
<tr>
<td>Eurocode (i.e. modification factor)</td>
<td>• Least revision to code</td>
<td>• Introduces additional term</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Likely least accurate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Least “transparent”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Judgment difficult</td>
</tr>
<tr>
<td>CHBDC</td>
<td>• Familiar application</td>
<td>• Intermediate accuracy & transparency</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• “perverse incentives”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Adds significant complexity to tables</td>
</tr>
</tbody>
</table>
Recommendations and Discussion Topics

- Questions/concerns?
- General thoughts/feedback?
Consequences of changes

- Perhaps shown comparison of OLS vs. Weighted Deming Regression from DD
Need buy in for:

- Using uncertainty in mean rather than variability
- Get feedback on using mean value as characteristic value.
Mean value of s_u

Mean undrained shear strength, μ_{s_u} (psf)

<table>
<thead>
<tr>
<th>Number of measurements, n</th>
<th>Mean undrained shear strength, μ_{s_u} (psf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5000</td>
</tr>
<tr>
<td>10</td>
<td>4500</td>
</tr>
<tr>
<td>20</td>
<td>4000</td>
</tr>
<tr>
<td>30</td>
<td>3500</td>
</tr>
<tr>
<td>40</td>
<td>3000</td>
</tr>
<tr>
<td>50</td>
<td>2500</td>
</tr>
</tbody>
</table>

Pemiscot Site

95th percentile = 6025 psf when $n=3$

Warrensburg Site

95th percentile = 6025 psf when $n=3$
COV of s_u - “variability and uncertainty”

Total variability and uncertainty for s_u, COV_{s_u}

Number of measurements, n

95th percentile=3.7 when $n=3$
95th percentile=2.4 when $n=4
COV of mean s_u - “uncertainty”

Pemiscot Site

Uncertainty in mean s_u, $COV_{\mu_{s_u}}$

Number of measurements, n

Warrensburg Site

Uncertainty in mean s_u, $COV_{\mu_{s_u}}$

95th percentile = 3.4 when $n=3$
95th percentile = 2.0 when $n=4$
Resistance Factors

- Strength I limit state, $\phi = 0$ conditions

![Graph showing resistance factors for different coefficient of variations.](image)

- Modified AASHTO
 - $p_f \approx 1/1,500$

- AASHTO (2012)
 - $p_f \approx 1/4,300$

- MoDOT (2011) & Modified MoDOT
 - $p_f \approx 1/1,500$
Simulation Results – p_f

$n = N$

$n = 25$

Pemiscot Site

Satisfactory

Under Reliable

Over Reliable

0.5 \cdot p_T

1.0 \cdot p_T

1.5 \cdot p_T

Frequency of p_f

Probability of Failure, p_f
Benefits of variable resistance factors

- Produce greater precision without undue effort
 ➔ Using funds where most needed

- Provide quantifiable value to site characterization
 ➔ Improves decision making

- Illustrate most significant source of variability
 ➔ Promotes continuous improvement

- Use of guidelines is saving MoDOT money
Tip resistance – shafts in clay

Resistance Factor for Unit Tip Resistance, ϕ_{tp}

COV of Mean Undrained Shear Strength, $C_{OV_{su}}$
Side resistance – shafts in hard rock

![Graph showing the relationship between COV of Mean Uniaxial Compressive Strength and Resistance Factor for Unit Side Resistance. The graph compares different categories of bridges: Bridges on Minor Roads, Bridges on Major Roads, Major Bridges (<$100 million), and Major Bridges (>=$100 million).]
Tip resistance – shafts in shale using SPT

![Graph showing the relationship between COV of Mean Equivalent SPT N-value and Resistance Factor for Unit Tip Resistance.]

- Bridges on Minor Roads
- Bridges on Major Roads
- Major Bridges (<$100 million)
- Major Bridges (>$100 million)
Test quantity modifier

\[\zeta = \frac{(n + 2.5)}{(n - 1)} \]
Conclusions for MoDOT Provisions

- Percentage of “under-reliable” designs is small and practically independent of n

- Increasing n increases percentage of “satisfactory” designs while decreasing percentage of “over-reliable” designs

- Improvement most significant for “good sites”
Code Differences

- Definition of “characteristic values”
- “resistance factors” vs. “partial factors”
- Methods for addressing parameter uncertainty
 - Prescriptive
 - Subjective
 - Quantitative
- Consideration of “indirect” or “derived” values
Conclusions for AASHTO Provisions

- Percentage of “satisfactory” designs is small and practically independent of n
- Increasing n reduces “under-reliable” designs while increasing “over-reliable” designs

For “good sites”:
- Few designs practically achieve target reliability
- Few under-reliable designs but many over-reliable designs

For “bad sites”:
- Few designs practically achieve target reliability
- Greater numbers of under-reliable designs but fewer over-reliable designs